Table 2. Selected geometric parameters $\left({ }_{\mathrm{A}}{ }^{\circ}{ }^{\circ}\right)$

$\mathrm{Cl}-\mathrm{C} 1$	$1.726(1)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.388(2)$
$\mathrm{S}-\mathrm{S}^{\mathrm{i}}$	$2.0432(5)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.398(2)$
$\mathrm{S}-\mathrm{C} 3$	$1.789(1)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.386(2)$
$\mathrm{O} 1-\mathrm{N}$	$1.221(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.370(2)$
$\mathrm{O} 2-\mathrm{N}$	$1.224(2)$	$\mathrm{C} 2-\mathrm{H} 2$	$0.88(2)$
$\mathrm{N}-\mathrm{C} 4$	$1.462(2)$	$\mathrm{C} 5-\mathrm{H} 5$	$0.93(2)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.381(2)$	$\mathrm{C} 6-\mathrm{H} 6$	$0.96(2)$
$\mathrm{Cl}-\mathrm{C} 6$	$1.384(2)$		
$\mathrm{S}-\mathrm{S}-\mathrm{C} 3$	$104.11(5)$	$\mathrm{S}-\mathrm{C} 3-\mathrm{C} 2$	$121.8(1)$
$\mathrm{O} 1-\mathrm{N}-\mathrm{O} 2$	$123.5(1)$	$\mathrm{S}-\mathrm{C} 3-\mathrm{C} 4$	$121.2(1)$
$\mathrm{O} 1-\mathrm{N}-\mathrm{C} 4$	$118.3(1)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$117.0(1)$
$\mathrm{O} 2-\mathrm{N}-\mathrm{C} 4$	$118.2(1)$	$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 3$	$121.2(1)$
$\mathrm{Cl}-\mathrm{Cl}-\mathrm{C} 2$	$118.8(1)$	$\mathrm{N}-\mathrm{C} 4-\mathrm{C} 5$	$116.7(1)$
$\mathrm{Cl}-\mathrm{Cl}-\mathrm{C} 6$	$119.3(1)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$122.1(1)$
$\mathrm{C} 2-\mathrm{Cl}-\mathrm{C} 6$	$121.9(1)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.1(1)$
$\mathrm{Cl}-\mathrm{C} 2-\mathrm{C} 3$	$120.5(1)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$118.4(1)$
	Symmetry code: (i)-x,y,(i) $-z$.		

Data collection: CAD-4 diffractometer software (EnrafNonius, 1977). Cell refinement: CAD-4 diffractometer software. Data reduction: MolEN PROCESS (Fair, 1990). Program(s) used to solve structure: MULTAN80 (Main et al., 1980). Program(s) used to refine structure: MolEN LSFM. Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: MolEN CIF IN.

The purchase of the diffractometer was made possible by a National Science Foundation Chemical Instrumentation Grant, which we gratefully acknowledge.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1145). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Abrahams, S. C., Collin, R. L. \& Lipscomb, W. N. (1951). Acta Cryst. 4, 15-20.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, S1-S19.
Bourdais, J. (1966). Fr. Patent 1443917.
Cox, E. G. \& Jeffrey, G. A. (1951). Proc. R. Soc. A, 207, 110-121.
Enraf-Nonius (1977). CAD-4 Operations Manual. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Haydar, S. M., Garcia, J. G. \& Krapcho, P. A. (1995). Unpublished results.
Johnson, C. K. (1976). ORTEP. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lee, J. D. \& Bryant, M. W. R. (1969a). Acta Cryst. B25, 2094-2101.
Lee, J. D. \& Bryant, M. W. R. (1969b). Acta Cryst. B25, 2497-2504.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Stevenson, D. P. \& Beach, J. Y. (1938). J. Am. Chem. Soc. 60, 28722876.

Wilson, M. L. \& Badger, R. M. (1949). J. Chem. Phys. 17, 1232-1237.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1144.

Acta Cryst. (1995). C51, 2335-2338

endo-5-Methyl-exo-6-phenylseleno-endo-tricyclo[5.2.1.0 ${ }^{2,6}$]dec-8-en-3-one

Frans G. Moers, Jan M. M. Smits and
Paul T. Beurskens
Crystallography Laboratory, University of Nijmegen,
Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Jie Zhu and Antonius J. H. Klunder
Department of Organic Chemistry, NSR Center for Molecular Structure, Design and Synthesis, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

(Received 26 August 1994; accepted 11 May 1995)

Abstract

Structural analysis of the title compound, $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{OSe}$, confirms the endo configuration of the C5-methyl group.

Comment

Tricyclo[5.2.1.0 $0^{2,6}$]decadienones, (1), have great potential as synthetic equivalents of cyclopentadienone and serve as building blocks in cyclopentanoid naturalproduct synthesis (Klunder, Bos \& Zwanenburg, 1981; Klunder, Zwanenburg \& Liu, 1991; Takano, Moriya \& Ogasawara, 1992; Liu \& Chu, 1993; Zhu, Klunder \& Zwanenburg, 1994a). The endo-tricyclodecadienone system, which is racemic and optically active, is also readily accessible via the ester (2b).

Recently, we studied the nucleophilic addition of a variety of alkyllithiumcuprates to the enone double bond in the parent compound ($2 a$), and the ester ($2 b$). Whereas addition to ($2 a$) proceeds with exclusively exo addition to give (3a), the presence of the exo ester
function in ($2 b$) apparently hinders attack from the exo side to some extent, as a considerable amount of the endo-addition product, ($4 b$), is now also observed (Dols, Verstappen, Klunder \& Zwanenburg, 1993). In order to establish the relationship between the nature of the functionality at the quarternary bridgehead position C6 and the stereochemistry observed for the conjugate addition of organolithiumcuprates to this tricyclic enone system, a series of differently substituted tricyclodecadienones, (2), are being studied. Most surprisingly, the conjugate addition of dimethyllithiumcuprate to the 6 -phenylselenotricyclodecadienone ($2 c$) gave a single addition product, the title compound ($4 c$), in nearly quantitative yield.

Although spectroscopic analysis suggested the formation of the endo-methyltricyclodecenone ($4 c$) ($R=\mathrm{Me}$), unambiguous confirmation of its structure was only pos-

Fig. 1. Displacement ellipsoids (probability 50%) and atomic numbering for the two independent molecules in comparable orientations.
sible by X-ray diffraction analysis. As no exo product, (3c) ($R=\mathrm{Me}$), was observed at all in this addition reaction, this result reveals that the 6 -phenylselenyl group completely controls the stereochemistry of the dimethyllithiumcuprate addition to the endo-tricyclodecadienone (2c).

Although the bulk of the seleno function undoubtedly plays an important role in determining the observed endo addition, electronic factors may also be of considerable importance (Dols, 1993; Dols, Verstappen, Klunder \& Zwanenburg, 1993). In order to evaluate such factors, studies involving tricyclodecadienones (2) substituted in the 6 position with O or S are currently in progress.
The $\mathrm{Se}-\mathrm{C}$ bond lengths are 1.911 (5), 1.994 (5), 1.919 (5) and 2.000 (5) \AA and the $\mathrm{Se}-\mathrm{C}$ bond angles are close to 100° [$\mathrm{Cl1}-\mathrm{Se} 1-\mathrm{C} 6101.1$ (2) and C31-Se21-C26 $\left.98.8(2)^{\circ}\right]$.

Experimental

The preparation of the crystals (melting point $334-335 \mathrm{~K}$; recrystallized from diisopropyl ether) will be described elsewhere (Zhu, Klunder \& Zwanenburg, 1994b).

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{17} \mathrm{H}_{18} \mathrm{OSe} \\
& M_{r}=317.27 \\
& \text { Monoclinic } \\
& P 2_{1} / c \\
& a=16.4845(7) \AA \\
& b=8.0579(4) \AA \\
& c=21.8436(13) \AA \\
& \beta=98.812(5)^{\circ} \\
& V=2867.2(3) \AA^{3} \\
& Z=8 \\
& D_{x}=1.470 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Data collection
Enraf-Nonius CAD-4 diffractometer
ω scans (Lehman \& Larsen, 1974; Grant \& Gabe, 1978)

Absorption correction: empirical (North, Phillips \& Mathews, 1968; Walker \& Stuart, 1983) (see below)
$T_{\text {min }}=0.419, T_{\text {max }}=$ 0.692

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0584$
$w R\left(F^{2}\right)=0.0685$
$S=1.293$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=22.56-27.71^{\circ}$
$\mu=2.609 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.33 \times 0.23 \times 0.19 \mathrm{~mm}$
Colourless

7132 measured reflections
6899 independent reflections
3021 observed reflections
$[I>2 \sigma(I)]$
$R_{\text {int }}=0.0460$
$\theta_{\text {max }}=27.96^{\circ}$
$h=0 \rightarrow 21$
$k=0 \rightarrow 10$
$l=-28 \rightarrow 28$
2 standard reflections frequency: 60 min intensity decay: 4.8%
$(\Delta / \sigma)_{\text {max }}=-0.158$
$\Delta \rho_{\text {max }}=0.417 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {max }}=0.417 \mathrm{e} \AA \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.472 \mathrm{e}^{-3}$
Extinction correction: none

6896 reflections
487 parameters
$\begin{gathered}w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0007 P)^{2}\right. \\ \\ \quad+4.5221 P] \\ \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\end{gathered}$
Atomic scattering factors
from International Tables
for Crystallography (1992,
Vol. C, Tables 4.2.6.8 and
6.1.1.4)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} . \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Sel	0.12824 (4)	0.00609 (8)	0.19782 (3)	0.0512 (2)
Cl	-0.0581 (4)	-0.2290 (8)	0.1078 (3)	0.055 (2)
C2	0.0254 (3)	-0.1593 (8)	0.0904 (2)	0.0435 (13)
C3	0.0543 (3)	-0.2559 (7)	0.0386 (3)	0.0476 (15)
C4	0.1238 (4)	-0.3680 (8)	0.0649 (3)	0.050 (2)
C5	0.1594 (4)	-0.2910 (8)	0.1278 (3)	0.049 (2)
C6	0.0878 (3)	-0.1957 (6)	0.1498 (2)	0.0436 (14)
C7	0.0325 (4)	-0.2859 (8)	0.1922 (3)	0.060 (2)
C8	0.0034 (5)	-0.4486 (9)	0.1617 (4)	0.071 (2)
C9	-0.0499 (4)	-0.4149 (9)	0.1114 (4)	0.069 (2)
C10	-0.0473 (4)	-0.1852 (9)	0.1762 (3)	0.065 (2)
C11	0.2011 (3)	0.0968 (7)	0.1464 (2)	0.0445 (14)
C12	0.1721 (4)	0.1735 (7)	0.0903 (3)	0.050 (2)
C 13	0.2272 (4)	0.2415 (8)	0.0561 (3)	0.057 (2)
C14	0.3098 (5)	0.2411 (9)	0.0774 (3)	0.062 (2)
C 15	0.3391 (4)	0.1721 (10)	0.1329 (3)	0.066 (2)
C16	0.2857 (4)	0.0952 (8)	0.1676 (3)	0.053 (2)
C17	0.2055 (7)	-0.4107 (12)	0.1742 (4)	0.085 (3)
Ol	0.0252 (2)	-0.2436 (5)	-0.0152 (2)	0.0669 (13)
Se21	-0.40920 (4)	0.14441 (7)	-0.32519 (3)	0.0460 (2)
C21	-0.5353 (3)	-0.2588 (8)	-0.3546 (3)	0.055 (2)
C22	-0.4574 (3)	-0.1973 (7)	-0.3103 (3)	0.0420 (14)
C23	-0.4008 (3)	-0.3385 (7)	-0.2872 (2)	0.0486 (14)
C24	-0.3231 (4)	-0.3314 (8)	-0.3158 (3)	0.049 (2)
C25	-0.3215 (3)	-0.1613 (7)	-0.3464 (2)	0.0371 (13)
C26	-0.4106 (3)	-0.0913 (6)	-0.3540 (2)	0.0330 (12)
C27	-0.4677 (3)	-0.1095 (7)	-0.4170 (3)	0.0452 (15)
C28	-0.4660 (4)	-0.2894 (8)	-0.4366 (3)	0.052 (2)
C29	-0.5062 (4)	-0.3774 (8)	-0.4003 (3)	0.056 (2)
C30	-0.5516 (4)	-0.1058 (9)	-0.3954 (4)	0.063 (2)
C31	-0.3322 (3)	0.2327 (6)	-0.3742 (2)	0.0411 (13)
C32	-0.3594 (4)	0.2916 (7)	-0.4335 (3)	0.0475 (15)
C33	-0.3039 (5)	0.3578 (8)	-0.4684 (3)	0.062 (2)
C34	-0.2225 (5)	0.3649 (9)	-0.4447 (4)	0.070 (2)
C35	-0.1952 (4)	0.3072 (8)	-0.3864 (4)	0.063 (2)
C36	-0.2488 (4)	0.2408 (8)	-0.3501 (3)	0.052 (2)
C37	-0.2813 (5)	-0.1618 (10)	-0.4044 (3)	0.057 (2)
O21	-0.4166 (3)	-0.4454 (5)	-0.2520 (2)	0.0771 (14)

Table 2. Selected geometric parameters ($\AA,{ }^{\circ}$)

Sel-C11	1.911 (5)	Se21-C31	1.919 (5)
Sel-C6	1.994 (5)	Se21-C26	2.000 (5)
C1-C9	1.505 (9)	C21-C29	1.514 (8)
$\mathrm{Cl}-\mathrm{C} 10$	1.520 (8)	C21-C30	1.521 (9)
$\mathrm{C} 1-\mathrm{C} 2$	1.586 (7)	C21-C22	1.564 (7)
C2-C3	1.510 (7)	C22-C23	1.509 (7)
C2-C6	1.554 (7)	C22-C26	1.569 (6)
C3-O1	1.203 (6)	C23-021	1.209 (6)
C3-C4	1.503 (8)	C23--C24	1.510 (7)
C4-C5	1.539 (8)	C24-C25	1.527 (8)
C5-C6	1.545 (7)	C25-C26	1.559 (6)
C6-C7	1.573 (7)	C26-C27	1.550 (7)
C7-C8	1.515 (9)	C27-C28	1.513 (8)
C7-C10	1.540 (9)	C27-C30	1.528 (8)
C8-C9	1.324 (9)	C28-C29	1.316 (8)
C11-Se1-C6	101.1 (2)	C31-Se21-C26	98.8 (2)
C9-C1-C10	100.6 (6)	C29-C21-C30	99.7 (5)
C9-C1-C2	106.9 (5)	C29-C21-C22	107.1 (5)
$\mathrm{C} 10-\mathrm{Cl}-\mathrm{C} 2$	100.2 (5)	C30-C21-C22	99.2 (5)
C3-C2-C6	106.6 (4)	C23-C22-C21	112.0 (5)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	112.4 (5)	C23-C22-C26	106.1 (4)
C6-C2-C1	102.8 (4)	C21-C22-C26	103.3 (4)
$\mathrm{Ol}-\mathrm{C} 3-\mathrm{C} 4$	126.1 (5)	O21-C23-C22	124.6 (5)

$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	$124.5(5)$	$\mathrm{O} 21-\mathrm{C} 23-\mathrm{C} 24$	$124.7(6)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$109.4(5)$	$\mathrm{C} 22-\mathrm{C} 23-\mathrm{C} 24$	$110.7(5)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$105.2(5)$	$\mathrm{C} 23-\mathrm{C} 24-\mathrm{C} 25$	$106.7(5)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$105.9(5)$	$\mathrm{C} 24-\mathrm{C} 25-\mathrm{C} 26$	$107.0(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 2$	$105.8(4)$	$\mathrm{C} 27-\mathrm{C} 26-\mathrm{C} 25$	$119.6(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$119.5(5)$	$\mathrm{C} 27-\mathrm{C} 26-\mathrm{C} 22$	$101.6(4)$
$\mathrm{C} 2-\mathrm{C} 6-\mathrm{C} 7$	$102.1(4)$	$\mathrm{C} 25-\mathrm{C} 26-\mathrm{C} 22$	$106.3(4)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{Se} 1$	$111.0(4)$	$\mathrm{C} 27-\mathrm{C} 26-\mathrm{Se} 21$	$110.2(3)$
$\mathrm{C} 2-\mathrm{C} 6-\mathrm{Se} 1$	$114.2(4)$	$\mathrm{C} 25-\mathrm{C} 26-\mathrm{Se} 21$	$110.2(3)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{Se} 1$	$104.2(4)$	$\mathrm{C} 22-\mathrm{C} 26-\mathrm{Se} 21$	$108.0(3)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 10$	$98.9(6)$	$\mathrm{C} 28-\mathrm{C} 27-\mathrm{C} 30$	$99.3(5)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 6$	$108.3(5)$	$\mathrm{C} 28-\mathrm{C} 27-\mathrm{C} 26$	$107.9(4)$
$\mathrm{C} 10-\mathrm{C} 7-\mathrm{C} 6$	$100.1(5)$	$\mathrm{C} 30-\mathrm{C} 27-\mathrm{C} 26$	$100.3(5)$
$\mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 7$	$108.2(7)$	$\mathrm{C} 29-\mathrm{C} 28-\mathrm{C} 27$	$108.2(6)$
$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 1$	$106.9(7)$	$\mathrm{C} 28-\mathrm{C} 29-\mathrm{C} 21$	$107.3(6)$
$\mathrm{C} 1-\mathrm{C} 10-\mathrm{C} 7$	$93.9(5)$	$\mathrm{C} 21-\mathrm{C} 30-\mathrm{C} 27$	$94.6(5)$

Application of PATTY in DIRDIF (Beurskens et al., 1992) afforded the the non- H atom positions. The initial positions of the H atoms of the two methyl groups were obtained by rotation of an idealized methyl group to match maximum electron density in the difference Fourier synthesis. The initial positions of the H atoms of the phenyl groups and $\mathrm{H}(2)$ were calculated ($\mathrm{C}-\mathrm{H} 1.00 \AA$). The remaining H atoms were found in a difference Fourier synthesis. All H atoms were refined with free isotropic displacement parameters.
After the isotropic refinement was completed using all atoms including H atoms, DIFABS (Walker \& Stuart, 1983) was applied. Correction factors for all reflections were in the range $0.698-1.154$, of which 113 reflections had correction factors > 1.10 (53 'observed' reflections and 60 'unobserved'). The conventional R factor reduced significantly from 0.088 to 0.072 [isotropic, $I>3 \sigma(I)$]. In retrospect, full-matrix anisotropic least-squares refinement on data without DIFABS correction resulted in an R value of 0.0715 as compared to 0.0584 [anisotropic, $I>2 \sigma(I)$] for the corrected data, and the standard deviations in the bond distances increased by about 40%. Recognizing that DIFABS can 'correct' more than just absorption effects, we think that this improvement in the results justifies its application. Uncorrected data are available from the authors on request.

The final difference Fourier results show that there is some residual electron density ranging from -0.47 to $0.42 \mathrm{e}_{\AA^{-3}}$. Most of this density is located near the Se atoms and may result from inadequate absorption correction.

Program used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics; PLATON (Spek, 1990). Software used to prepare material for publication: SHELXL93.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1222). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarcíaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
Dols, P. P. M. A. (1993). PhD thesis, Univ. of Nijmegen, The Netherlands.
Dols, P. P. M. A., Verstappen, M. M. H., Klunder, A. J. H. \& Zwanenburg, B. (1993). Tetrahedron, 49, 11353-11372.
Grant, D. F. \& Gabe, E. J. J. (1978). J. Appl. Cryst. 11, 114-120.

Klunder. A. J. H., Bos, W. \& Zwanenburg, B. (1981). Tetrahedron Lett. 22, 4557-4560.
Klunder, A. J. H., Zwanenburg, B. \& Liu, Z. Y. (1991). Tetrahedron Lett. 32, 3131-3132.
Lehman, M. S. \& Larsen, F. K. (1974). Acta Cryst. A30, 580-584.
Liu, Z. Y. \& Chu, X. J. (1993). Tetrahedron Lett. 34, 3885-3888.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.
Takano, S., Moriya, M. \& Ogasawara, K. (1992). Tetrahedron Lett. 33, 1909-1910.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Zhu, J., Klunder, A. J. H. \& Zwanenburg, B. (1994a). Tetrahedron Lett. 50, 10597-10610.
Zhu, J., Klunder, A. J. H. \& Zwanenburg, B. (1994b). Tetrahedron. In preparation.

Acta Cryst. (1995). C51, 2338-2340

2-Benzamido-3-(p-chlorophenyl)propenoic Acid (Antrex)

R. A. Palmer, A. J. Richards and J. N. Liggarten
Department of Crystallography, Birkbeck College, University of London, Malet Street, London WClE 7HX, England

(Received 14 March 1995; accepted 19 May 1995)

Abstract

The phenyl and chlorophenyl rings are planar in the title compound, $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{ClNO}_{3}$. The structure is stabilized by intermolecular hydrogen bonds involving the OH (donor) groups of the carboxylic acid moieties, the carbonyl O atoms (acceptor) of the carboxylic acid moieties and the Cl atoms (acceptor) of the chlorophenyl groups, together with hydrogen bonds between the amino N atoms (donor) and the carbonyl O atoms (acceptor) of the benzamide moieties.

Comment

In an attempt to prepare the compound 7-(4-chloro-phenyl)-5-(4-methoxyphenyl)-2-phenyloxazolo[5,4-b]pyridine, (I), some colourless crystals were obtained (sample supplied by Dr V. Bansal, University of Rajasthan). The crystal structure determination was undertaken to obtain information for use in structurefunction studies of 2-phenyloxazolo[5,4-b]pyridine compounds thought to possess analgesic properties (Clark et al., 1978). The result of this analysis indicates that the compound is 2 -benzamido- 3 -(p-chlorophenyl)propenoic acid, (II), which is a cleaved version of the originally
proposed structure in which the two N -containing rings are broken. How this cleavage occurred remains open to conjecture.

(I)

(II)

The phenyl and chlorophenyl rings are planar. There are no significant deviations from the average bond lengths [1.380 (7) and 1.375 (7) \AA]. The bond angles $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 17$ [117.9 (4) ${ }^{\circ}$] and $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$ [116.7(4) ${ }^{\circ}$] in these rings show slight deviations from the average bond angles of $120.0(4)$ and $120.0(5)^{\circ}$, respectively. These distortions are in keeping with the findings of Domenicano, Murray-Rust \& Vaciago (1983). The C-Cl bond length [1.741 (5) \AA] is typical of $\mathrm{C}-\mathrm{Cl}$ bond lengths in structures of the type $\mathrm{C}(\mathrm{ar})-$ Cl (Allen et al., 1987). The Cl atom is displaced by 0.086 (7) \AA from the least-squares plane calculated for the phenyl ring, the Cl atom and C 7 (r.m.s. deviation of all eight atoms is $0.013 \AA$). The backbone chain of the molecule, $\mathrm{C} 4-\mathrm{Cl} 2$, is in an extended conformation between C7 and C12, while C4 is cis to N10, by rotation about C7-C8 (Table 2).

Hydrogen bonds involving the OH (donor) groups of the carboxylic acid moieties, the carbonyl O atoms (acceptor) of the carboxylic acid moieties and the Cl atoms (acceptor) of the chlorophenyl groups, together with hydrogen bonds between the amino N atoms (donor) and

Fig. 1. Minimum overlap view of the molecule showing 50% probability displacement ellipsoids.

